Конспект урока Анализаторы, их строение и функции, зрительный анализатор


Строение глаз

Глаза располагаются в глазницах (углублениях) черепа, состоят из глазных яблок, вспомогательного аппарата. Первые имеют форму шара диам. до 24 мм, весят до 7-8 г. Они образованы несколькими оболочками:

  1. Склера – наружная оболочка. Непрозрачная, плотная, включает кровеносные сосуды, нервные окончания. Передняя часть соединена с роговицей, задняя – с сетчаткой. Склера придает форму глазам, не давая им деформироваться.
  2. Сосудистая оболочка. Благодаря ей питательные вещества поступают к сетчатке.
  3. Сетчатка. Образована клетками фоторецепторов (палочки, колбочки), вырабатывающие вещество родопсин. Оно преобразовывает энергию света в электрическую, в дальнейшем она распознаётся корой мозга.
  4. Роговица. Прозрачная, без кровеносных сосудов. Находится она в переднем отделе глаза. В роговице преломляется свет.
  5. Радужная оболочка (радужка). Образована мышечными волокнами. Они обеспечивают сокращение зрачка, находящегося в центре радужки. Именно так регулируется количество света, попадающего в сетчатку. Цвет радужки глаз обеспечивается концентрацией в ней особого пигмента.
  6. Ресничная мышца (ресничный поясок). Её функция — обеспечение способности хрусталика фокусировать взгляд.
  7. Хрусталик. Прозрачная линза, благодаря которой обеспечивается отчётливое зрение.
  8. Стекловидное тело. Представлено гелеобразной прозрачной субстанцией, находящейся внутри глазных яблок. Через стекловидное тело свет проникает от хрусталика к сетчатке. Его функция – формирование устойчивой формы глаз.

Зрительный анализатор. Строение и функции глаза

Глаза — орган зрения — можно сравнить с окном в окружающий мир. Примерно 70% всей информации мы получаем с помощью зрения, например о форме, размерах, цвете предметов, расстоянии до них и др.
Зрительный анализатор контролирует двигательную и трудовую деятельность человека; благодаря зрению мы можем по книгам и экранам компьютеров изучать опыт, накопленный человечеством.

Орган зрения состоит из глазного яблока и вспомогательного аппарата.

Вспомогательный аппарат — это брови, веки и ресницы, слезная железа, слезные канальцы, глазодвигательные мышцы, нервы и кровеносные сосуды

Брови и ресницы защищают глаза от пыли. Кроме того, брови отводят стекающий со лба пот. Все знают, что человек постоянно моргает (2—5 движений веками в 1 мин).

Но знают ли зачем? Оказывается, поверхность глаза в момент моргания смачивается слезной жидкостью, предохраняющей ее от высыхания, заодно при этом очищаясь от пыли. Слезную жидкость вырабатывает слезная железа. Она содержит 99% воды и 1 % соли. В сутки выделяется до I г слезной жидкости, она собирается во внутреннем углу глаза, а затем попадает в слезные канальцы, которые выводят ее в носовую полость.

Если человек плачет, слезная жидкость не успевает уйти по канальцам в носовую полость. Тогда слезы перетекают через нижнее веко и каплями стекают по лицу.

Глазное яблоко располагается в углублении черепа — глазнице. Оно имеет шаровидную форму и состоит из внутреннего ядра, покрытого тремя оболочками: наружной — фиброзной, средней — сосудистой и внутренней — сетчатой.

Фиброзная оболочка подразделяется на заднюю непрозрачную часть — белочную оболочку, или склеру, и переднюю прозрачную — роговицу. Роговица представляет собой выпукло-вогнутую линзу, через которую свет проникает внутрь глаза. Сосудистая оболочка расположена под склерой.

Ее передняя часть называется радужкой, в ней содержится пигмент, определяющий цвет глаз. В центре радужной оболочки находится небольшое отверстие — зрачок, который рефлекторно с помощью гладких мышц может расширяться или сужаться, пропуская в глаз необходимое количество света.

Собственно сосудистая оболочка пронизана густой сетью кровеносных сосудов, питающих глазное яблоко. Изнутри к сосудистой оболочке прилежит слой пигментных клеток, поглощающих свет, поэтому внутри глазного яблока свет не рассеивается, не отражается.

Непосредственно за зрачком находится двояковыпуклый прозрачный хрусталик.

Он может рефлекторно менять свою кривизну, обеспечивая четкое изображение на сетчатке — внутренней оболочке глаза. В сетчатке располагаются рецепторы: палочки (рецепторы сумеречного света, которые отличают светлое от темного) и колбочки (они обладают меньшей светочувствительностью, но различают цвета). Большинство колбочек размещается на сетчатке напротив зрачка, в желтом пятне. Рядом с этим пятном находится место выхода зрительного нерва, здесь нет рецепторов, поэтому его называют слепым пятном.

Внутри глаз заполнен прозрачным и бесцветным стекловидным телом.

Восприятие зрительных раздражений

. Свет попадает в глазное яблоко через зрачок. Хрусталик и стекловидное тело служат для проведения и фокусирования световых лучей на сетчатку. Шесть глазодвигательных мышц обеспечивают такое положение глазного яблока, чтобы изображение предмета попадало бы точно на сетчатку, на ее желтое пятно.

В рецепторах сетчатки происходит преобразование света в нервные импульсы, которые по зрительному нерву передаются в головной мозг через ядра среднего мозга (верхние бугры четверохолмия) и промежуточного мозга (зрительные ядра таламуса) — в зрительную зону коры больших полушарий, расположенную в затылочной области.

Начавшееся в сетчатке восприятие цвета, формы, освещенности предмета, его деталей, заканчивается анализом в зрительной зоне коры. Здесь собирается вся информация, она расшифровывается и обобщается. В результате этого складывается представление о предмете.

Нарушения зрения.

Зрение людей меняется с возрастом, так как хрусталик теряет эластичность, способность менять свою кривизну.

В этом случае изображение близко расположенных предметов расплывается — развивается дальнозоркость. Другой дефект зрения — близорукость, когда люди, наоборот, плохо видят удаленные предметы; она развивается после длительного напряжения, неправильного освещения.

Близорукость часто возникает у детей школьного возраста из-за неправильного режима труда, плохой освещенности рабочего места. При близорукости изображение предмета фокусируется перед сетчаткой, а при дальнозоркости — позади сетчатки и поэтому воспринимается как расплывчатое. Причиной этих дефектов зрения могут быть и врожденные изменения глазного яблока.

Близорукость и дальнозоркость исправляются специально подобранными очками или линзами.

  • Важно помнить о том, что любой вид информации доставляется в головной мозг по нервным путям в виде нервных импульсов, и наши ощущения зависят от того, в какой отдел мозга приходят эти импульсы. Если импульсы от рецепторов сетчатки глаза попадут в слуховые центры, то на основе увиденного в них начнут формироваться звуковые образы.

Представляете себе, какая путаница в ощущениях может возникнуть! Именно так и бывает при нарушениях работы мозга.

  • Всю информацию об окружающем мире человек получает через органы чувств. Если эта информация не будет поступать в мозг, то нервная система не сможет нормально развиваться, и человек превратится в идиота. Если поступающая информация по какой-либо причине искажена, то мозг принимает решения на основе неверных сведений, и поведение человека становится, по меньшей мере, странным, а иногда просто опасным как для самого человека, так и для окружающих его людей.
  • Считается, что существует три вида колбочек, воспринимающих соответственно красный, зеленый и фиолетовый цвета. Все остальные оттенки цвета определяются комбинацией возбуждений в этих трех типах рецепторов. Больше всего колбочек располагается прямо напротив зрачка — в так называемом желтом пятне; по краям сетчатки колбочек почти нет, там находятся одни палочки. А вот в месте выхода из сетчатки зрительного нерва совсем нет ни колбочек, ни палочек. Это место получило название слепого пятна.
  • Около 7% мужчин неспособны правильно различать цвета. Чаще всего они не могут отличить красный цвет от зеленого. Например, мальчик с такой патологией не увидит красный мячик в зеленой траве. Для обычной повседневной жизни это нарушение, называемое дальтонизмом, большой проблемы не представляет, по вот водить самолеты, поезда, а иногда и автомобили дальтоникам не рекомендуется.
  • Следует отметить, что оптическая система глаза формирует на сетчатке не только уменьшенное, но и перевернутое изображение предмета. Обработка сигналов в центральной нервной системе происходит таким образом, что предметы воспринимаются нами в их естественном положении.
  • Если человек наденет очки, которые переворачивают изображение, и будет их носить не снимая, то через некоторое время мозг «вернет» картинке нормальное положение, и человек будет видеть как обычно, будто бы на нем нет «переворачивающих» очков.Но вот когда он эти очки снимет, мир в его глазах опять перевернется! Правда, ненадолго: мозг быстро обучается, и будет снова снабжать своего владельца правильной информацией об окружающем мире.
  • Зрительный анализатор человека обладает потрясающей чувствительностью.Так, мы можем различить освещенное изнутри отверстие в стене диаметром всего 0,003 мм. Тренированный человек (причем у женщин это получается гораздо лучше) может различать сотни тысяч цветовых оттенков. Зрительному анализатору достаточно всего 0,05 секунды для распознавания объекта, который попал в поле зрения.

Проверьте свои знания

  1. Что такое анализатор?
  2. Как устроен анализатор?
  3. Назовите функции вспомогательного аппарата глаза.
  4. Как устроено глазное яблоко?
  5. Какие функции выполняют зрачок и хрусталик?
  6. Где располагаются палочки и колбочки, в чем заключаются их функции?
  7. Как работает зрительный анализатор?
  8. Что такое слепое пятно?
  9. Как возникают близорукость и дальнозоркость?
  10. Каковы причины нарушения зрения?

Подумайте

Почему говорят, что глаз смотрит, а мозг видит?

Орган зрения образован глазным яблоком и вспомогательным аппаратом. Глазное яблоко может двигаться благодаря шести глазодвигательным мышцам. Зрачок— небольшое отверстие, через которое в глаз попадает свет.

Роговица и хрусталик являются преломляющим аппаратом глаза. Рецепторы (светочувствительные клетки — палочки, колбочки) находятся в сетчатке.

Вспомогательный аппарат

Вспомогательный аппарат глаз образован веками, бровями, слёзными мышцами, ресницами, двигательными мышцами. Он обеспечивает защиту глаз и их движения. Сзади они окружены жировой клетчаткой.

Над глазницами находятся брови, защищающие глаза от попадания жидкости. Веки способствуют увлажнению глазных яблок, обеспечивают защитную функцию.

К вспомогательному аппарату относятся ресницы, при раздражении они обеспечивают защитный рефлекс смыкания век. Следует также упомянуть о конъюнктиве (слизистой оболочке), ею покрыты глазные яблоки в передней части (кроме роговицы), веки изнутри.

В верхних внешних (латеральных) краях глазниц есть слёзные железы. Они вырабатывают жидкость, нужную для обеспечения прозрачности роговицы и её чистоты. Также она предохраняет глаза от высыхания. Благодаря миганию век слёзная жидкость может распределяться по поверхности глаз. Защитную функцию также обеспечивают 2 запирающих рефлекса: роговичный, зрачковый.

Глазное яблоко двигается с помощью 6-ю мышц, 4 называют прямыми, а 2 — косыми. Одной парой мышц обеспечиваются движения вверх-вниз, второй парой — движения влево-вправо. Третья пара мышц даёт возможность глазным яблокам вращаться относительно оптической оси, глаза могут смотреть в различных направлениях, реагируя на раздражители.

Зрительный нерв, его функции

Значительная часть проводящего пути образована зрительным нервом длиной 4-6 см. Он начинается на заднем полюсе глазных яблок, где представлен несколькими нервными отростками (т. н. диск зрительного нерва (ДЗН). Проходит он и в глазнице, вокруг него находятся оболочки мозга. Небольшая часть нерва располагается в передней черепной ямке, где окружена цистернами мозга, мягкой оболочкой.

Основные функции:

  1. Передаёт импульсы от рецепторов в сетчатке. Они проходят к подкорковым структурам мозга, а оттуда к коре.
  2. Обеспечивает обратную связь путём передачи сигнала от коры мозга к глазам.
  3. Отвечает за быструю реакцию глаз на раздражители извне.

Над местом входа нерва (напротив зрачка) имеется жёлтое пятно. Его называют участком наивысшей остроты зрения. В состав жёлтого пятна входит красящий пигмент, концентрация которого довольно значительна.

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

ЗРИТЕЛЬНЫЙ АНАЛИЗАТОР

— сложная система оптических и глазодвигательных центров и их связей, обеспечивающая восприятие, анализ и интеграцию зрительных раздражений.

3. а. состоит из периферического отдела, включающего фоторецепторный аппарат сетчатки глаза, зрительный нерв и зрительный тракт (см. Глаз, Зрительные центры, пути, Зрительный нерв), и центрального (мозгового) отдела, объединяющего подкорковые и стволовые центры, а также зрительную область коры полушарий большого мозга. Подкорковыми образованиями 3. а. являются латеральное коленчатое тело и подушка таламуса (см. Таламус), верхние холмики крыши среднего мозга — четверохолмия (см.). Зрительная область коры больших полушарий состоит из первичного воспринимающего 17 поля (area striata) и вторичных (экстрастриарных) 18 и 19 полей (см. Архитектоника коры головного мозга, Головной мозг, Кора головного мозга).

3. а. представляет собой часть целостной функциональной системы, связанной со многими другими образованиями мозга, ответственными за сложные формы связи зрительной и других видов информации, лежащих в основе зрительного узнавания, или гнозиса (см. Агнозия), а также сохранения и поддержания позы на основе зрительного восприятия. Сочетанная деятельность 3. а. обеспечивается широкой системой его связей с ретикулярной формацией ствола мозга, гипоталамусом, различными областями коры головного мозга. В акте зрения участвуют теменная, височная, моторная, лобная, лимбическая и другие области коры головного мозга. Характер участия каждой из этих структур достаточно специфичен, что способствует обеспечению огромного диапазона изменений чувствительности 3. а. в зависимости от степени освещенности, расстояния до определенного предмета, биол, значимости раздражителя и других условий. Особенно демонстративно это проявляется при так наз. ориентировочном рефлексе (см. Ориентировочно-исследовательская реакция), обусловленном включением прежде всего ретикулярной формации. Важная, хотя еще и мало изученная, роль в регуляции деятельности 3. а. принадлежит его многочисленным кортико-фугальным связям.

3. а. играет огромную роль в жизни большинства животных и человека, обеспечивая восприятие информации о разнообразных предметах и свойствах окружающей среды — освещенности, форме, величине, цвете, направлении движения, о расстоянии до предмета и его пространственных соотношениях с другими предметами. Зрительное восприятие является сложным процессом, формирующимся как за счет импульсов от действия света на фоторецепторы сетчатки глаза, так и в результате проприоцептивных раздражений его двигательного аппарата — мышц глазного яблока, радужки, аккомодационной (ресничной) мышцы.

Центральным отделам 3. а. свойственно слоистое расположение нейронов, аналогичное воспринимающей поверхности сетчатки глаза (см. Сетчатка). Число нервных элементов и их взаимосвязей прогрессивно увеличивается от периферии к центральным отделам 3. а. Принцип прогрессивной дивергенции зрительных импульсов сочетается с принципом конвергенции зрительного возбуждения от нейронов сетчатки обоих глаз (бинокулярное взаимодействие) на одних и тех же нейронных комплексах — прежде всего в корковом отделе З.а.

Для 3. а. характерна также ретинотопическая проекция, когда определенные точки сетчатки проецируются на соответствующие отделы разных уровней зрительного анализатора. В поле 17 осуществляется пространственная непрерывность этих проекций; менее четкий характер проекций имеет место и в экстрастриарных зрительных полях (18 и 19). Светооптический отдел 3. а.— сложная многоканальная система, каждый из каналов к-рой должен иметь свою функциональную специфику. Восприятие относительно простых свойств зрительных сигналов осуществляется с помощью рецептивных зон, организованных в системы вертикально расположенных комплексов (столбиков) корковых нейронов 17 поля. Более сложные комплексы зрительных сигналов воспринимаются рецептивными полями 18 и 19.

Частичное повреждение стриарной коры или разрыв ее некоторых афферентных связей с латеральным коленчатым телом сопровождается выпадением той или иной части поля зрения (см. Скотома). При повреждении одного из полушарий большого мозга происходит выпадение половины поля зрения (см. Гемианопсия). При этом часть центрального зрения сохраняется, и у больных наблюдается тенденция дополнять до целого знакомые объекты, попадающие на их «слепое» поле.

Двустороннее разрушение коркового отдела 3. а. у высших млекопитающих (собак, обезьян) или обширные повреждения затылочной доли у человека приводят к потере предметного зрения при сохранении способности различать интенсивность освещения, а также, возможно, и контуры предметов. Эти свойства зрительного восприятия являются прерогативой подкорковых и стволовых отделов 3. а.

Центральные двигательные механизмы зрительного восприятия — механизм координации движений глазных яблок, конвергенции зрительных осей, рефлекторной регуляции диаметра зрачка — обеспечивают согласованную работу 3. а. в целом. Особая роль в этих механизмах принадлежит верхним холмикам крыши среднего мозга, претектальной области, корковым центрам движения глаз, а также ядрам и проводникам глазодвигательных нервов. Аппарат глазодвигательной функции, т. о., в основном структурно обособлен от светооптического отдела 3. а.

Значение 3. а. для различных представителей животного мира далеко не однозначно и зависит от их образа жизни. Такие особенности зрения, как его острота, различение цветов, ночное или дневное зрение и прочее, отразились определенным образом на структуре и химизме периферических и центральных отделов 3. а. Острое зрение и способность к различению цветов характерны для большинства птиц и многих приматов, у собак эта особенность выражена слабее. Различительные возможности 3. а. у человека достаточно высоки в отношении цвета, яркости и формы предметов. Особенно развита у человека по сравнению с животными способность к сложнейшему синтезу зрительного и других восприятий, сформировавшаяся в процессе длительного социального развития — в результате трудовой деятельности и членораздельной речи.

Нарушение функции 3. а.— см. Зрение, патология.

Библиография:

Кононова Е. П. Анатомия и физиология затылочных долей, М., 1926; СкребицкийВ. Г. Регуляция проведения возбуждения в зрительном анализаторе, М., 1977; Сомьен Дж. Кодирование сенсорной информации в нервной системе млекопитающих, пер. с англ., М., 1975; Физиология сенсорных систем, под ред. А. С. Батуева, Л., 1976; Ш к о л ь н и к-Я p р о с Е. Г. Нейроны и межнейронные связи, зрительный анализатор, Л., 1965.

О. С. Адрианов.

Центральный отдел

Место локализации центрального (коркового) отдела центрального анализатора — в затылочной доле (задняя часть). В зрительных зонах коры заканчиваются процессы анализа, а затем начинается распознавание импульса — создание образа. Условно выделяют:

  1. Ядро 1-ой сигнальной системы (место локализации — в районе шпорной борозды).
  2. Ядро 2-ой сигнальной системы (место локализации — в районе левой угловой извилины).

По Бродману центральный отдел анализатора расположен в полях 17, 18, 19. Если поражено поле 17, возможно наступление физиологической слепоты.

Строение сетчатки

Сетчатка имеет оптическую область, являющуюся светочувствительной. Данная область распространяется до зубчатой линии. Также имеются нефункциональные зоны: ресничная и радужковая, которые содержат лишь два слоя клеток. В ходе эмбрионального развития сетчатка формируется из той же части нервной трубки, которая дает начало центральной нервной системе. Именно поэтому ее характеризуют как вынесенную на периферию часть мозга.

Слои сетчатки:

  • внутренняя пограничная мембрана;
  • волокна зрительного нерва;
  • ганглиозные клетки;
  • внутренний плексиформный слой;
  • внутренний нуклеарный;
  • наружный плексиформный;
  • наружный нуклеарный;
  • наружная пограничная мембрана;
  • слой палочек и колбочек;
  • пигментный эпителий.

Основной функцией сетчатки является восприятие света. Это обеспечивается благодаря наличию рецепторов двух типов:

  • палочки – около 100-120 миллионов;
  • колбочки – около 7 миллионов.

Свое название рецепторы получили благодаря форме.

Существует три вида колбочек, которые содержат по одному пигменту – красный, зеленый, сине-голубой. Именно благодаря этим рецепторам человек различает цвет.

Палочки имеют в составе пигмент родопсин, поглощающий красные лучи спектра. В ночное время преимущественно функционируют палочки, днем – колбочки, в сумерках все фоторецепторы на определенном уровне активны.

Фоторецепторы в различных областях сетчатки распределены неравномерно. Центральная зона сетчатки (фовеа) – это область наибольшей плотности колбочек. Плотность расположения колбочек к периферическим отделам уменьшается. В то же время центральная область не содержит палочек, их наибольшая плотность вокруг центральной зоны, а к периферии плотность несколько уменьшается.

Зрение представляет собой очень сложный процесс, являющийся результатом сочетания возникающих в фоторецепторах реакций под воздействием световых лучей, передачи нервных импульсов в биполярные, ганглиозные нервные клетки, по волокнам зрительного нерва, а также обработки полученной информации в коре головного мозга.

Чем меньше фоторецепторов соединено с последующей за ними биполярной клеткой и далее с ганглиозной клеткой, тем выше зрительная разрешающая способность. В центральной зоне сетчатки (фовеа) одна колбочка соединяется с двумя ганглиозными клетками, в отличие от этого в периферических зонах множество рецепторных клеток соединены с небольшим количеством биполярных клеток, малым количеством ганглиозных клеток, передающих импульсы по аксонам в головной мозг. Следовательно, область макулы, где концентрация колбочек высокая, характеризуется качественным зрением, при этом палочки периферических отделов обеспечивают периферическое зрение, менее четкое.

Сетчатка содержит два типа нервных клеток:

  • горизонтальные – располагаются в наружном плексиформном слое;
  • амакриновые – находятся во внутреннем плексиформном слое.

Эти два типа нейронов обеспечивают взаимосвязь между всеми нервными клетками сетчатки.

В медиальной половине сетчатки (ближе к носу) приблизительно в 4 миллиметрах от центральной зоны расположен диск зрительного нерва. Эта область полностью лишена светочувствительных рецепторов, поэтому в месте ее проекции в поле зрения определяется слепая зона.

Сетчатка имеет разную толщину на различных участках. Наиболее тонкая часть сетчатки находится в центральной зоне – фовеа, которая обеспечивает наиболее четкое зрение, самая толстая часть – в зоне диска зрительного нерва.

Сетчатка прилежит к сосудистой оболочке и прочно крепится к ней только вдоль зубчатой линии, по периферии макулярной области и вокруг зрительного нерва. Все остальные области характеризуются рыхлым соединением сетчатки и сосудистой оболочки, и в этих зонах наиболее вероятна отслойка сетчатки.

Трофика сетчатки обеспечивается за счет двух источников: внутренние шесть слоев получают питание из системы центральной артерии сетчатки, наружные четыре – непосредственно из сосудистой оболочки (ее хориокапиллярного слоя). Сетчатка не имеет чувствительных нервных окончаний, поэтому патологические процессы сетчатки не сопровождаются болью.

Механизм восприятия информации

Механизм действия зрительного анализатора сравнивают с работой телевизора. Глазные яблоки можно ассоциировать с антенной, принимающей сигнал. Реагируя на раздражитель, они преобразовываются в электроволну, которая передаётся к участкам коры мозга.

Проводниковая часть, состоящая их нервных волокон, — это телевизионный кабель. Ну а роль телевизора выполняет центральный отдел, находящийся в коре мозга. Он обрабатывает сигналы, переводя их в образы.

В корковом отделе мозга происходит восприятие сложных объектов, оцениваются форма, размер, удалённость предметов. В результате полученная информация объединяется в общую картинку.

Итак, свет воспринимается периферической частью глаз, проходя к сетчатке через зрачок. В хрусталике он преломляется и преобразуется в электроволну. По нервным волокнам она поступает к коре, где полученная информация расшифровывается и оценивается, а затем декодируется в зрительную картинку.

Изображение воспринимается здоровым человеком в трёхмерном виде, что обеспечивается наличием 2-х глаз. От левого глаза волна идёт к правому полушарию, а от правого – к левому. Соединяясь, волны дают чёткое изображение. Свет преломляется на сетчатке, образы поступают в мозг перевёрнутыми, а после они преобразуются в форму, привычную для восприятия. При каком-либо нарушении бинокулярного зрения человек видит сразу 2 картинки.

Предполагается, что новорождёнными окружающее видится в перевёрнутом виде, а образы представляются в чёрно-белом цвете. В 1 год дети воспринимают мир почти как взрослые. Формирование органов зрения заканчивается к 10-11 годам. После 60 лет зрительные функции ухудшаются, так как наступает естественный износ клеток организма.

Подкорковые зрительные центры и зрительная лучистость

В латеральных коленчатых телах, являющихся подкорковыми зрительными центрами, заканчивается основная масса аксонов ганглиозных клеток сетчаток и происходит переключение нервных импульсов на следующие зрительные нейроны, именуемые подкорковыми, или центральными. В каждый из подкорковых зрительных центров поступают нервные импульсы, идущие из гомолатеральных половин сетчаток обоих глаз. Кроме того, в латеральные коленчатые тела информация поступает также из зрительной коры (обратная связь). Предполагается и наличие ассоциативных связей между подкорковыми зрительными центрами и ретикулярной формацией ствола мозга, способствующей стимуляции внимания и общей активности (arousal).

Латеральное коленчатое тело состоит из шести слоев. Каждый из них имеет несколько (обычно шесть) пластов нервных клеток. Установлено, что в шести-слойном подкорковом зрительном центре расположение нейронов сохраняет определенную упорядоченность и свойственные сетчатке топографо-анатомические соотношения. Чередующиеся слои латерального коленчатого тела получают зрительные импульсы только от гомолатеральных (правых или левых), соответствующих стороне расположения коленчатого тела половин сетчатки то одного, то другого глаза. В чередовании слоев нет абсолютной последовательности.

Так, в левом коленчатом теле проекции правых половин сетчаток располагаются в следующем порядке (от поверхностного слоя к глубинному): левый глаз, правый, левый, правый, правый, левый. Объяснения неполной последовательности чередования проекций гомогенных половин сетчаток правого и левого глаз пока нет. Перечисленные проекции половин сетчаток в слоях латерального коленчатого тела располагаются в точности одна под другой.

В эксперименте было доказано, что клетки наружного коленчатого тела отвечают на достигающие их зрительные импульсы приблизительно так же, как ганглиозные клетки сетчатки реагируют на зрительные импульсы, поступающие к ним от фоторецепторов. При этом центральные зрительные нейроны коленчатых тел и соответствующие им ганглиозные клетки сетчатки, которые можно называть периферическими зрительными нейронами, имеют сходную структуру рецептивных полей с on- и off-центрами зрительных нейронов и дают сходные биоэлектрические ответы, зависящие от интенсивности и цвета световых импульсов.

Установлено также, что соседние ганглиозные клетки сетчатки и центральные зрительные нейроны подкоркового зрительного центра расположены между собой н идентичной последовательности. Предполагают, что некоторые нейроны латерального коленчатого тела имеют короткие аксоны, обеспечивающие местные межнейронные синаптические связи, что позволяет предполагать их взаимодействие, ведущее к возможному предварительному анализу и синтезу поступающей в подкорковые центры зрительной информации. Вместе с тем о роли наружных коленчатых тел в обработке зрительной информации в настоящее время нет единого мнения. Д. Хьюбел в 1990 г. высказывал предположение, что в ней, по-видимому, не происходит никаких значительных преобразований поступающих из сетчатки зрительных импульсов. Вместе с тем Дж. Г. Николе, А.Р. Мартин, Б.Дж. Валлас и П.А. Фукс (2003) признают, что нейроны коленчатых тел участвуют «в обеспечении первых шагов анализа зрительных сцен: определение линий и форм на основе поступающего из сетчатки сигнала…»

Аксоны нейронов латерального коленчатого тела, выходящие из шести слоев латерального коленчатого тела объединяются в единый пучок и участвуют в формировании задней ножки внутренней капсулы, а затем образуют имеющую значительную протяженность следующую часть зрительных путей — зрительную лучистость.

Зрительная лучистость

Аксоны зрительных нейронов, расположенных в латеральном коленчатом теле, входят в состав белого вещества больших полушарий. При этом сначала они образуют компактный пучок, участвующий в формировании задней ножки внутренней капсулы, точнее ее подчечевидной части (pars sublenticularis), а в дальнейшем формируют зрительную лучистость (radiatio optici), или пучки Грациоле. После прохождения так называемого перешейка височной доли мозга зрительная лучистость расширяется и приобретает форму широкой ленты. Такая особенность организации этой части зрительной лучистости приводит к тому, что повреждение ее нередко оказывается частичным, ввиду ее значительной ширины и некомпактности расположения входящих в ее состав нервных волокон. В связи с этим поражение зрительной лучистости тотальным бывает лишь при достаточно распространенном патологическом процессе.

Нервные волокна, входящие в состав зрительной лучистости, участвуют в формировании белого вещества височной, теменной и затылочной долей. В височной доле вблизи наружной стенки нижнего рога бокового желудочка большинство волокон нижней части зрительной лучистости сначала проходят вперед к полюсу височной доли. Затем эти волокна, формируя петлю Мейера, поворачиваются назад и проходят в составе белого вещества височной и затылочной долей.

В итоге они достигают коры язычной извилины (gyrus linqualis), образующей нижнюю «губу» шпорной борозды (sulcus calcarinus), расположенной на медиальной поверхности затылочной доли.

Верхняя часть зрительной лучистости прямее и потому короче нижней. Она проходит в составе белого вещества теменной и затылочной долей полушария и заканчивается, вступая в контакт с корковыми клетками, расположенными в верхней губе шпорной борозды, формируемой извилиной, известной под названием клин (cuneus). Кора медиальной поверхности затылочной доли, окружающая шпорную борозду и распространяющаяся в ее глубину, составляет первичное проекционное зрительное поле, занимающее цитоархитектоническое поле 17, по Бродманну.

Следует напомнить, что зрительные пути на всем их протяжении проводят зрительные импульсы, располагаясь в строгом ретинотопическом порядке и сохраняя при этом свойственные сетчатке топографо-анатомические соотношения.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]